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Abstract. There are a lot of papers, which dedicate to attenuation of seismic waves due to

viscous fluid in pores and cracks. Beginning from famous papers of Biot, the attenuation of

seismic waves was related with internal friction between matrix and fluid. But this theoretical

model ignores the structure of pore space, in particularly, a specific surface of the pore space.

But just this internal surface produces a friction effect itself. No wonder, the main effect was

the more viscosity, the more attenuation of seismic waves. If it would be truth, the mentioned

problem would be solved immediately, because the differences of viscosity of fluids reach up

to several orders. Obviously, the real pore space gives some not simple effects, which don’t us

a possibility to have a success in all real geological situations. In this paper author decide that

the attenuation depends not on viscosity itself, but on the ratio between average thickness of

crack and so called viscous length of fluid. Besides of it, there is no monotonous increasing of

attenuation by increasing of frequency. This relation has some maximum, and there is a small

attenuation both by very high frequency and by very low one.
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Introduction. The cracked media have very special structure of pore space. The main feature

of it is following. These media may have very small porosity, but not small, even very large a

specific surface. There is a relation [1] between specific surface σ0 , an average distance

between one crack to another l0 and porosity f in the form:

)1(400 fl −=σ (1)

The special feature of small porosity cracked medium is small one dimension compared to

two others. On the other words, the thickness of crack is very small value, compared to the

average straight linear segment of it, or square root of one section area. It gives a possibility,

as a first step, to use the test problem about of fluid, which is moving through volume,

bounded by infinite parallel planes divided fluid (within of them) and solid matrix (outside of

them) (Fig.1). This classical problem about moving of fluid through narrow slot was solved

Landau and Lifschitz [2].

Test problem of Landau and Lifschitz.

Let’s put that two planes oriented parallel axes x. Vertical coordinates of them are –h/2 and

h/2. Let’s put too, that the volume force, which causes a flow of fluid, oriented along axes x

too. Besides of it authors supposed that mentioned volume force is a periodic function of time,

kind of tiae ω− , where a-is amplitude and ω is a frequency of vibration. On the other words

there is a relation tiae
x
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In the equation (2) p is a pressure in liquid and ρ is a density of it. The Navier-Stokes equation

takes a form:
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where V means the particle velocity, ν=η/ρ is the kinematics viscosity and η is an usual

dynamics viscosity. After Fourier transformation with respect to time arises the ordinary

differential equation in the form:
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In equation (4) 1−=i , while 
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 is the viscous length. As to

boundary conditions there are usual hydrodynamics conditions of adhesion, i.e.

V(h/2)=V(-h/2)=0. (5)

A strong solution of equation (4) by boundary conditions (5) is giving by expression
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k means an expression ikk o= , i.e. k is a complex value.

The average relative velocity between boundary and liquid <V> may be calculated as:
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In the case of very thin slot, i.e. kh→0 there is more simple relation

<V>=
ν12

2h
a  (8)

It means that the value <V> is a pure real value in this passage to the limit. In the opposite

case by kh→∝ , the analogous value is a pure imaginary one, according to expression

<V>=
ω
a

i . (9)

Equation of motion and attenuation of seismic waves.

Lets try to calculate the volume friction force F due to gradient of particle velocity, namely:
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The specific surface σ0 remakes a surface force 
y

V

∂
∂

η  into volume force F, which

corresponds to the mentioned surface force. A dimensionless product of a specific surface σ0

to the average thickness h is equal to the double porosity 2f. A volume force F in (10) is a

complex value, because k is a complex value too. In order to write the equation, of motion it is

necessary to generalize the effects on the arbitrary positions of forces or arbitrary normal

vectors of planes. As to volume forces ρa, which is acting to fluids bounded by any couple of

plane, this value is equal to the common volume force in microinhomogeneous medium, i.e.

k

ik

x∂

∂σ
, or to the equal value .2

iuρω  The friction volume force is acting against inertial force,
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and thy have the opposite signs. Hence in inertial term there are two summands, namely usual

inertial force and friction force with opposite Sign. The equation of motion takes a form:
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The real value in brackets means some change of frequency due to internal friction, while an

imaginary part fg(kh)=Im
2

2 kh
tg

kh
f  gives us an attenuation of seismic wave due to internal

friction. This dimensionless function g(kh) can be expressed by the real variable x=k0h/2√2 or

x=h/2√2λs, where λs is the viscous length. The formula, which describes an attenuation takes

the form:
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The relationship (12) is shown on the Fig2. The curve, which shows an attenuation have a

maximum near x=3/2. It means, that the attenuation depends on a ratio between average

thickness of crack and viscous length of fluid. There is no possibility to divide the effects of

viscosity and thickness of crack separately. There is a possibility to estimate a ratio of them

only. Besides of it, the attenuation doesn’t depend on specific surface. It is an interesting case

that the structure of pore space represented by porosity only. On the table 1 is shown different

attenuation for average thickness of crack which is equal to one mm. The numbers of vertical

lines on the Fig. 2 correspond to numbers on the table 1. The gases have very small usual

dynamics viscosity η. But the kinematics viscosity ν=η/ρ is not small

TABLE 1.

h=0,1 cm x=h/2√2λs

1. Gas 50 Hz , pressure 10 Mpa x=1.414

2. Water 50 Hz x=2,5

3. Oil 1 KHz x=1,12.10
---2

4. Gas 1 KHz pressure 10 Mpa x=6,324.

5. Gas 1KHz pressure   1 Mpa x=2

Other situations with very small attenuation due to viscous fluid in cracks

6. Oil 50 Hz x=25

7. Gas 50 Hz pressure o,1 Mpa x=14,1

8. Water 1KHz x=11,2

The maximum of attenuation for frequency 50 Hz and average thickness 0,1 cm corresponds

to gas in cracks by pressure about 10 Mpa. But by pressure about 0,1Mpa the attenuation is

negligible small. The same not simple situations there are for other practical examples. There

is no wonder, that in practice there are a lot of positive examples of detection expressly of gas

in cracks and pores, in spite of the viscosity of it is very small. Besides of it, the attenuation is

not increase with growing of frequency, unlike on simple media without pore space. In

structured media, in particularly, in cracked media there is both effects, namely, increasing

and decreasing of attenuation with frequency, depends on the ratio between average thickness

of crack and viscous length of it.

Conclusion.

The attenuation of seismic waves in cracked media due to viscous fluid in cracks doesn’t

depend on viscosity itself. It depends on the ratio between average thickness of crack and

viscous length of fluid. This mentioned value (viscous length) for gas is changing very fast by
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different pressure in it. This phenomenon explains some successful experiments about

detection of productive layers, containing gas with high pressure.

There is no a monotonous increasing of attenuation by increasing of frequency. This

relationship has some maximum. Thus there is small attenuation both for very high frequency

and for very low one.

On the Fig.1 is shown the profile of fluid particle velocity. The fluid bounded by two planes

y=-h/2 and y=h/2.

On the Fig. 2 is shown a relationship between dimensionless function of attenuation g(x) and

dimensionless ratio between average thickness of crack and viscous length of fluid x=h/λs2√2.

This relation has a maximum, and there is a small attenuation both for very high frequency

and very low one. The numbers correspond to data on the table 1.
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